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SIGNIFICANCE AND EXPLANATION

We present an analysis of a one-dimensional model of single-junction

semiconductor devices (pn-junctions and certain resistors) when an external

voltage is applied to the contacts. The model has the form of a system of six

highly nonlinear first order ordinary differential equations subject to

boundary conditions at the contacts of the device. The system is singularly

perturbed (the derivatives of some components are multiplied by a small

constant, the so called singular perturbation parameter). The dependent --

variables are the electrostatic potential, the hole and electron densities and

the hole and electron current densities. A region of fast variation in the

electrostatic potential and in the carrier distributions occurs due to the

singular perturbation character of the problem. This region is in the

interior of the device (internal layer) and represents the junction between

differently doped areas. We derive formal asymptotic expansions of solutions

as the singular perturbation parameter tends to zero and we prove that such an

expansion 'represents' a solution. We also investigate the dependence of the

total current on the externally applied voltage (voltage-current

characteristic). Accession For
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ABSTRACT

In this paper we present an analysis of the fundamental one-dimensional
semiconductor equations describing potential, carrier, and current density
distributions in single-junction semiconductor devices when an external
voltage is applied to the contacts. We reformulate the model equations by
appropriate scaling as a singularly perturbed two point boundary value problem
for a system of nonlinear ordinary differential equations. The right-hand
side of the system has a jump discontinuity with respect to the independent
variable (space-coordinate) representing the junction between differently
doped sides of the device. The solution components are assumed to be
continuous across this junction. ,

We give an existence proof for the reduced problem (the singular
perturbation parameter is set to zero). The discontinuity of the right-hand
side of the system produces a discontinuity in the reduced potential and
reduced carrier distributions. This creates an internal layer in the
corresponding solution components of the singularly perturbed problem. The
current distributions have no internal layer. We also derive the (internal)
layer equations and give an existence proof. No boundary layers occur.

We show that formal expansions actually represent (asymptotically)
solutions of the singularly perturbed problem if the applied voltage is
sufficiently small, and we investigate the dependence of the total current on
the applied voltage. Numerical computations are reported.
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AN ASYMPTOTIC ANALYSIS OF SINGLE-JUNCTION
SEMICONDUCTOR DEVICES-

Peter A. Markowich ,C. A. Ringhofer

E. Langer and S. Selberherr

1. introduction

in this paper we present an analysis of a class of systems of ordinary differential -

equations, subj-uct to boundary conditions, modelling pn-junction devices. The physical

situation is as follows. A semiconductor (for example Silicon) is doped with

acceptor atoms (negative ions) in the left side, with donor atoms (positive ions) in the

right hand side and a bias U UA -UC is applied to the contacts:

anode contact p side n -side cathode contact

UA Applied UC Applied
And ptnial Cathode potential

-Z. 0 Z 9. Z

The device is assumed to have characteristic length 29.(f 5 x 103 cm) and the junction is

at z = z e (-t,L) (the term junction refers to the boundary of the n and p regions as

well as to the whole device). The device is forward biased for U > 0 and reverse biased

fo~r U < 0. vhe physics of pn-junction is o~xplained in Sze (1969), Ashcrof'- and

(1976) and R. A. Smith (1978).

Institut fuer Angewandte und Numerische Mathematik, Technische Universitit Wien, A-1040
WIEN, AUSTRIA.

Mathematics Research CenterUniversity of Wisconsin-Madison, Madison, WI 53705.

Institut fe lgnieEetochkTechnische tUniversitlt Wien, A-1040 WIEN,
AusrRI A.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This material is
based upon work supported by the National Science Foundation under Grant No. MCS-7927062,
mod. 2.
The seocond author was also supported by the Austrian 'Forschungsf8rderur~gsfond'.
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The equations describing the electrostatic potential, the carrier densities and the

current densities within the device (in the static, one-dimensional case) ere:

(a) (n" UM+ - Poisson's equation
CnPCD~ NA~z

Mb n' - nit' +. 3 electron current relation
D n n

(()C) p' PV J hole current relation
D p p

Cd) 3'V qP~n,p,3 J3 continuity equation for electron.
n n#p

(e) J qR~n,p,J J3 continuity equation for holes
p n'p

for z e (-t,tJ "' denote. differentiation with respect to z) subject to the boundary

conditions

Ca) flit U~Tn + UA Canode)

pW-)

Cb *(L) U T n - + C cathode)

(1.2) n

(c) n±I)pCQ t) n ni

Cd) nC±Lt) -p(±1) N4 C+L±) N AC+LU

(See Van Rooshroeck (1950).)

The dependent variables (with units) in (1.1), C(1.2) are

* electrostatic potential CV

electrostatic field (Vcm

n electron density (cm -

-3p hole density (cm

2
J elect-ron current density CA/cm

n
2

J :hole current density CA/cm
p

All parameters in (1.1), (1.2) (except N AzW, N Cz)) and the temperature T are assumed

-2-



tn be constant. Table 1 gives the physical meaning and approximate numerical values of

these parameters at T m 300K (room temperature) for silicon.

Table 1: Parameters for Silicon at T * 300K

Parameter Physical Meaning Numerical Value

elementary charge 10-
19

As

c permittivity constant 10-
12
As/V

4n electron mobility 103cm2 /vs

ii hole mobility 10
3
cm 

2
/Vs

p

D electron diffusion constant 25 cm
2
/S

D 2
I'hole diffusion constant 25 cm /S

ni  intrinsic number 1010cm 3

D D

UT  thermal voltage 0.025V

n p

v..

N is the density of electrically active acceptor atoms and ND is the density of

electrically active donor atoms and

+ ~z c-3)
(1.3) C(z) N(Z) - W (cm

is called doping (or impurity) profile. For the pn-junction C(z) is negative for

z e [-4,Z) (p-side) and positive for z e (z,] (n-side) and is assumed to have a jump-

discontinuity at z = Z (abrupt junction). We also investigate the less important and

much simpler case C(z) 0 in [-L,A] (but still with a jump-discontinuity at z Z).
+ +

These devices are called n n- or nn -junctions (depending on whether

C(z 1 ) > C(z 2) or Clz 1) < C(z 2) for all z1 0 [-L,X], z2 P (X,Il).

Th aayssof1+ +"
The analysis of 1 p and pp junctions (C(z) < 0 on [-L,]) is analogous to the

+. +

analysis of n n and nn junctions. Only n and p, Jn and J have to be
r

interchanged and # has to be substitfited hy -,.

2 2
The scalar function R e c(o,-) x R ) in (1.1)(e) is called recombination term, it

is the rate at which lectron-hole carrier pairs are generated (R < 0) or recombine

-3-
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p

2
(vanish) (R ) 0), R(n,p,O,O) - 0 for n, p such that p - nI holds (equilibrium

condition).

The Shockley-Read-Hall (SRN) recombination term

2np - n

npn -3 -1
(1.4) R - R (n,p) - a(' 

1

SRH T (n+n + -
p i (ni

describing thermal recombination, where T nT p( 10"6 ) are the electron and hole--

lifetimes, is widely used. Different ways of modelling R (which are necessary for very

large JUJ) are given in Langer, Selberherr and Mader (1981) and Schfitz, Selberherr and

Pbtzl (1982).

The boundary conditions (1.2)(c) express that the contacts z - ±t are in thermal P.

equilibrium and (1.2)(d) represents vanishing space charge at the contacts.

We only admit solutions of (1.1), (1.2) which fulfill

I
(1,5)(a) *,n,p,Jn,3 p 6 C ([-L,2])
(1.5)(a) *Fnf n* 1 np 1

Sc I ([-L,z]), #' e c ([z,t])

(1.6) n ) 0, p ) 0 on t-1,1]

(1.5) comes from the jump-discontinuity of C(z) ( " cannot be continuous if n, p are

continuous), the equation (1.1)(a) has to be fulfilled for the right hand limit and for

the left hand limit of 4" at z = Z. (1.6) has to hold on physical grounds since n, p

are densitites.

In this paper we scale (1.1), (1.2) such that we obtain a singular perturbation
A

problem. The perturbation parameter (called X in the sequel) is equal to where
CU 1/2

AD = (q maxfC(z)I/ is the minimal Debeye length.

ze[-t,i]

We present an asymptotic analysis of (1.1), (1.2) (for A small, which corresponds to

large dopino ICJ). The discontinuity of C(z) at z - Z produces an (internal) layer in

the fast components *,',n,p. Jn, Op are the slow components (uniformly C
1  

as

A * 0+).

-4-
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We derive the reduced problem (1 = 0), the layer equations and give existence

theorems for both. The reduced problem has the form of a two-point boundary value problem

with interface conditions at the discontinuity. Using these results we prove an existence

result for the full problem (1.1), (1.2) (for sufficiently large doping IC, that means

A small) assuming that the recombination rate R S 0 (corresponding to infinite electron

and hole lifetime) and that IUI is small. We show that (for A sufficiently small)

there isa solution of (1.1), (1.2) whose fast components are close to the sum of the

(corresponding) 'reduced' solution components and the layer terms and whose slow components

are close to the corresponding 'reduced' solution components. No layers at the contacts

occur since the 'reduced' solution fulfills the 'reduced' boundary conditions.

We also investigate the dependence of the total current J - J + J on the applied
n p

voltage U (J is a constant because of (1.1)(d),(e)). It turns out that J is

asymptotically (as A + 0+) a linear function of U if C(W) > 0 on [-1,f) (n+n and
+

nn junctions are resistors) and J is asymptotically an exponential function of U if

C changes sign at Z.

The singular perturbation approach to pn-junction modelling was suggested by many

authors. Vasilev'a and Butuzow (1978), Vasilev'a and Stelmakh (1977) and D. Smith (1980)

investigated a much simplified model (they assume that the current densities are known

instead of the applied voltage, that Z -0 and that C(z) is odd) and prove an existence

theorem using the asymptotic expansions. The authors of this paper analyzed (1.1), (1.2)

(1982) under the (pretty unrealistic) assumption that the junction Z is in the middle of

the device and that the doping profile C is odd. This allows to reduce the internal

layer problem to a boundary layer problem. The advantages of the singular perturbation

approach for the numerical solution of (1.1), (1.2) is also explained in the latter paper.

The generalization of the presented theory to multilayer structures like bulk-barrier

diodes (see Langer, Selberherr and Nader (1981)) or thyristors (see Sze (1969)) is

straightforward.

-5-
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This paper is organized as follows. In Section 2 we perform the scaling and

reformulation of (1.1), (1.2) as a singular perturbation problem, in Section 3 we derive

the expansions, prove existence theorems for the reduced problem and the internal layer

problem and in Section 4 we give the existence proof for R B 0 the full singularly

perturbed problem in the case A and IUI smeall. Numerical results for large U are

demonstrated in Section 5.

p

-6-
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2. Scaling

We scale the dependent variables as follows
(2.1) * = L, 2 , " .= -  2

UT C C

(2.2) -.. ,--A---P--
a D qC PS Dp

Jp

where C = max IC(z)l and the independent variable
ze [-I,AJE

(2.3) x f -z

Then (1.1) reads

(a) 2 e - p -D(x)

(b) n' = n ' + J
5 ss8 na

(C) p -ps -s

(2.4)
2DqC nlaC"d) 3' , 'R.,' -T

(d) Jn D C s Jp5
n

~~ 2 D qC qp

e sa' D F' psp

for -1 4 x < 1 ("' denotes now differentiation with respect to x). We have set

(2.5) D(x) - (IDx)I 1)

and 2

CU.,U
(2.6) ) 2 -D12 12q"

I £qC

The boundary conditions (2.2) are

2 U
(a) * (-1) =n(+jUT

2 2
ns(1) Uc

Y T
(2.A)

(c) n (±1)- (ti) 4 A 4

(d) ns(±) - ps (±I) D(±1)

-7- =K 7
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where

2 Zqni
(2 .9 ) C T

holds.

We now assume that the recombination term R is such that

DnqC D qC
(2.10) R(Cns'CPs, J P- CS(ns pJ nJ ,YA)

Cn S I A n SI PS n p

2 2
holds, where S e C((O,) x R x (0,-)) is independent of C.

Dropping the index s the problem now reads

(a) X24I- n-p-D(X)

(b) n' n*' + J
n

(2.11) (c) p, = -p1 - J -1 x ( 1P

(d) J' = S (npJ J 'YA)
n n n' p

(e) ' = -S (n, ,IY)
p p 'n jp

2 2

with S = S S, S = S subject to the boundary conditions
n D n p D 22 Un (a ) V(- 1 ) = Ln ( Y .1 ) + UT

n(1) Uc C-

(b) *(1) = n2) + U

(2.12)
4X4

(c) n(il)p( l) = 4 -

(d) n(i1) - p(±l) = D(±1)

If Dn =Dp =D holds we have

(2.13) Sn = Sp

Under this assumption and T = T = T we get for the SRH term with 8 -
n p 2 AL

4 4

(2.14) S =S np2 2
n p a n+p+2y 2 X

Generally, the equilibrium condition implies that S (n,p,0,0,yA) = S (n,p,0,0,yA) = 0n p
4 4

holds for n, p such that np y A

-8-
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The discontinuity of D occurs at

(2.15) X -Z

and the conditions on the solution of (2.11), (2.12) are

(2.16) (a) *,npJ n'p e C ([-1'1])

(2.16) (b) it' e c ((-1,xi), *- e c I(x,1])

(2.17) n ) 0, p ) 0 on [-1,1]

(see (1.5), (1.6)).

The boundary values for n, p and * can be computed from (2.12)(c),Cd):

, () 12 4 4,, 1, - 12 ,4 ,
(2.18) n(l) - / + (-D(l) + / + 4

. + D(_1)2 4) 4)

(2.19) n(-) . (D(-I) + /D(()2 + 4y
4 4

), p() - + 4y

(2.21) *(11 n 01) +0DI2 + +44]

2,y2A
2  

UT

For A small the problem (2.11), (2.18), (2.19), (2.20), (2.21) constitutes a singularly

perturbed two-point boundary value problem.

A small means that C is large (assuming that I is constant). In practical cases

- 117 uhtatA2 0. xt6c 10 such that A 4 0.4 x 10 holds. For the following analysis we assume for the

sake of simplicity that 0(x) is independent of A (it would suffice to assume that D

is analytic in A), that means that the doping IC(z)I' increases 'as a whole' as

A + 0+. Actually, the asymptotic analysis presented in the next sections requires that

mn ID(z)
(2.22) ze-t] > 12

ze[-t,]

2 2 n
and since y = thatmax IC(z)I ta

ze[-L,I1

(2.23) ni << max IC(z)Ize[-I , 1

.9-
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holds.

The two cases we deal with now are

()D(X) < 0 for x e [-I,X]; D(x) > 0 for x e (X,1] and

IDx)I > DA for x e [-1,1]

which corresponds to the pn-junction and

(M) Dx) > DB > 0 for x e (-1,1]

corresponding to an nn
+  

or n +n junction. In both cases (A) and (B) we assume that

D(X+), D(X-) (we use the notation of fMX1 l-h fVx) in the sequel) exist and

x+X±

D(X+) V D(X-) and that D is sufficiently smooth everywhere else.

The analysis of the scaled problem is complicated by the logarithmic blow-up of the

boundary data of * as given by (2.20), (2.21) in the case (A).

The potential difference of the contacts is given by

Ubi")
(2.24) +-) - 4(1) - + bi

UT  UT

where the build-in-voltage U b(A) (i.e. the voltage due to doping) is given by

4 4
Ub W1 I2 4 n(~~4 Il A ) + O~y 4 4 D-1) < 0 (A)

(2.25) -U In -1 D(-12+4y4
DO) / 2 4 1'+ 0(y414), (-I) > 0

U (A) is bounded as A * 0+ in the case (). Since (2.11) depends only on *'. *" (and

bi

not on #) we can therefore remove the singularity in the boundary conditions by
1

substituting * by - Zn The equations (2.11) remain unchanged and the new
Y 2A

boundary conditions for the case (B) are:

(2.26) C-1) - In[-CDC-1) + D(-1)2+4y44 )] + A

2 U TU

(2.27) W() tnC-! (DCM + /o1'UyC)

2 U

-10-
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3. Expansions

In this Section we apply the standard approach for singularly perturbed boundary value

* problems to the semiconductor problem. We assume that the solution has a formal

*asymptotic expansion in X, each term in the series being the sum of a uniformly smooth

function and layer terms.

A problem that occurs is the blow up of the boundary values of #' in the case CA),

which implies that 'reduced' boundary conditions (A-0) cannot be defined formally for

* 4'.For the derivation of the expansions we set in the case (A)

(3.1)(a) (a) #(-I) M W' b) 4() - *I

and assume that +' ' are independent of A (this will be justified later). In the

* case (a3) 'reduced' boundary conditions for #' can be obtained from (2.26), (2.27) and we

sets

* (3.1) C) I'= n DC-i C d nDI
UT T

* We make the following 'ansatz'u

(3.2)(a) ;'CxA) + ;(0 + +~r *" + ..

(3.2)(b) n(x,A) - n(x) + n(o) + n (T) + n (r' +**.

* (3.2)(c) pxA p() + Pr ('

(3.2)(d) J (x,A) - JxW + 3 (a) + 3 (T) + 3 (4) +
n n n n n

A r

(3.2)(e) J Cx,X) 3 CW + 3 (0) + 3 (T) + 3 4' +

pp p p IA

*where the dots stand for a power series in A (starting with the 0(A)-term) whose

coefficients are of the same form as the given O(M terms. The fast variables are

(3.3) a) a x-X

A

(3.3) (h) x1 X e (1

(3.3)C) I



The functions marked with -'denote the reduced solution (of order zero), ~ denotes

the internal layer terms (at x - X) (of order zero), '- denotes the layer terms (of

order zero) decaying from the left boundary x -- 1 (with index L) and the layer terms

(of order zero) decaying from the right boundary x +1 (with index r) resp. The

boundary condition

(3.4) (a) ( )n(±)p(..±) C±) 0n p

(3.4) (b) *L~ nt~ - P't J~ n p

(3.4) (c) *( a n(- p i ).(i n)j( 0

hold, since the internal layer terms are regarded as functions on R, the left layer terns

are regarded as functions on (0,.), the right layer terms as functions on C-i,]

1 2 2
We assume that Sn s e c ((0,-) x a X (0,YX 1) and that A < A . Inserting into

Pt 0 0

(2.11), comparing 0(1-terms and evaluating away from x t 1, X gives the reduced

problem (or order zero):

(a) 0 =n-p-D~x)

Mb n' = n -
n

(3.5) (C) p =-p *-J - x (C I
p

(d) J; - S npJ .0j'j')

Ce) V' - -S (n,p,J ,J ,0)
p p np

We have to expect that In, p are discontinuous at x =X, therefore (3.5) has to hold

for the right hand and left hand limits at x - X. Evaluation close to X+ gives

the right (zeroth order) (internal) layer problem

(a) *=n-p

(b) n = (n+nCX+))*

(3.6) C) p - -(p+PCX+))* 0 4 <

n

4(e) J =0L

-12-



C '. denotes differentaition with respect to the corresponding fast variable in the

sequel) and evaluation close to X- gives the left (zeroth order) (internal) layer problem

(a) *n-p*. - I
(b) n - (n+nX-))

(3.7) (c) p - -(p+p(X-))* - 4 9 ( 0 •

d) J n 0n

(a) J -0
p

Similarly we obtain the left (boundary) layer problem

* *

(b) n , (n,+n(-))

(3.8) (C) ,+ 0 4 < t

d) J -0nt

(e. J 0
Pt

The right (boundary) layer problem is obtained from (3.8) by substituting n(-I), p(-I) by

.; n(l), PM,)

Inserting into (2.19), (3.1)(a) and comparing 0(1)-coefficients of ) gives the

matching conditions at x , -1

[D(-1) , DC-1) > 0
(a) nC-I) + n (0)

0 D-1) < 0

(-) + to) 0 , (-I) > 0

(3.9) (b) pC-1) + p (0) L-D(-1) ,D(-1) < 0

(C) *i(-I) + (0)

(2.18), (3.1)(b) gives the matching conditions at x I 1

-13-
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(a) W) + n r(0) -DMI

(3.10) (b) PMI + pr (0) -0

(c) 1) + r +

The continuity conditions (2.16) give the interface conditions

(a) riCK-) + ;CO-) = (X+) + nCO+)7

(b) p(X-) + pCO-) =p(X+) + p10+)

Cc) *(X-) + *(0-) =*CX+) + *CO+)

(d) #(0-) - *CO+)

(e) Y CX-) + 3 (0-) aJ (X+) + J~ (0+)n n nn

Cf) 3 CX-) + 1 (0-) 1 ( X+) + J (0+)
p p p p

From C3.7)Cd),(e), (3.8)(d),Ce) and from the analogous equations for the right J n* 3 p-

* layer terms we immediately conclude that

(3.12) 3 3 ip 0, 3 1 0, 3 1 3 0
n p n1  1  r ~r

since 13.4) has to hold. No zeroth order layers occur in Jn, Jp. The current densities

are the slow components.

The problem (3.8), (3.9) has been dealt with in Markowich, Ririghofer, et al (1982) and

it has been shown that

(3.13) In, a 1  0

holds. The same analysis goes throught for the right boundary layer terms and

(3. 14) ii in r p Pr 0

follows. No zeroth order boundary layers occur, since the reduced boundary conditions

* for n, p CC2.18), (2.19) with I - 0) can be fulfilled by, the reduced solution due to

(3.5)(a).

By including more terms in the expansion (3.2) it turns out that higher order boundary

layer terms occur. Similarly, higher order internal layers occur in the slow component
as as as as

i i if Onnor 3n nPor a )are not constant zero.

-14-



Integrating (3.6)(b),(c), (3.7)(b),(c) gives

(3n.X)) f( ) , > 0

(p(X)( 1), 0 1

* I ~(3.16) p@

o0a < 0

Inserting (3.15), (3.16) into (3.11)(a),(b) gives
kpXl #e0°-) , #(<0+

(3.17) ;(X-).* 0
- n(X ).9(0+)

(3.18) p(Xe
9 0  

- -9+ ) .

From (3.11)(c), (3.5)(a) we get the interface conditions for the reduced problem

(a) (X+)(x)(x+) (x-)
(3.19)

(b) (n(X-) - D(X-))e n(X+) - D(X+)

and from (3.11)(e),(f) and (3.12) 1

(c) j (X+) - J (x-)
(3.19)

(d) J (X+) - j (X-)
P p

The boundary conditions follow from (3.9), (3.10) and (3.13), (3.14)

(3.20) ()D(- 0 D(-I) ( 0

(b) ;(-1) _ .

(a) n(1) D 0(1)

,3.21) (b) "i(,)-

nliminatinq p from (3.5)(b),(c) using (3.5)(a) giv s the reduced! equations

-15-
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D (Y 33
(a) n p

2n - D

- n-D)J -n~J + Wfl -1 4 x < X

(b) n -

(3.22) 2- n

Cc) 3' S (n, p,J J3 ,0) X <x 4
n n np

(d) 3 -S (n,p,J .3 .0)
p p np

assuming that D e C C(-1,X]) A C CCX,1]). p in given by (3.5)(a):

-- (3.22) Ce) p - n-D(x)

We obtain the internal layer problem by inserting (3.15), (3.16) into (3.6)(a), (3.7)(a):

(a) * nCx-)e - pX-)e - DCX-). < a < 0

(3.23) -

Cb) * C+e-P(X+)e - D(X+), 0 < a <

subject to the boundary conditions

(c) *Cu 0

(3.23)
(d) *C)=0

and the interface conditions

(e) ;CO+) - (0-) i (X-) i *x+)

(3.23)
Cf) *C0+) #(*0-)

Because of (2.17) we require that the solutions np of the reduced problem are

nonnegative, that means:

(3.24) n~x) )maxC0,D(X)), x e 1-1,11

has to hold. Under this assumption we prove a simple consequence of the interface

conditions (3.19).

Lemmna 3.1. Assume that (3.24) holds Cat least at X-, X+). Then

DCX-) < 0, DCX+) > 0 ~
C3.25)

CjCX-) < *CX+) and n(X+) > DCX+). nCX-) > 0)

holds.

-16-



Proof: Assume first that *(- (X+). Then (3.19)(a) implies that ;;(X+) - (X-) and

(3.19)(h) implies DCX-) - DCX+). This is a contradiction to the assumption that D has a

jump discontinuity at x - X. Therefore #(X- #' (X+). We compute n(X+) from (3.19)

- DX+)DCX#eX-)*(+)
(3.26) ;(X+) D(- -DX)

(3.25) follows immediately from (3.26).

0

We now give existence theorems for the reduced problem and start with the simple case

Theorem 3.1. Assume that D(x) > > 0 on [-1,1], D ec ([-1,X]), D e c ([X,13) and

that

(3.27)Sn D(x),0,J,0,0) SS (D(x),0,J,0,0) SE 0 for all x e [-1,1]

and all J e R

Then the reduced problem (3.22), (3.19), (3.20), (3.21) has the solution

(a) n(x) 'S D(x)

(b) p~x) 2- 0 -1 OC x < X

(c) J (x) 3 0 X < x 4C 1
p

(d) J x) !I 6

(3.28) x a

-a +- DCn (x -1 4 x < X
UU I' ds

(e) #(x) T (s)

-C + In D(x) - U 1 d X < X 4 1

T ~-l D(S)

Proof: Assume (3.28)(a),ib),(c). Then (3.27), (3.19)(c) imply that Y3 conat on

[-1,11. Fror (3.22)(a) we conclude that

-17-



- €_ J~nD-( L-'n  x de -1 x < X
-(-1) --1 D(G)

+ ( ,n f x x IC

holds. Nov (3.22) and all boundary conditions are fulfilled. . has to be calculated
n

from (3.19)(a). (3.19)(b) is automatically fulfilled.) (3.28)(a) follows then by using

(3.1) (c), (d),.-

For a recombination rate R which depends only on n, p, (3.27) is a direct

consequence of the equilibrium condition. Therefore Theorem 3.1 holds for the SRH-

recombination term.

Rssuming the validity of the asymptotic expansions (3.2) (which will be proven later)

the theorem implies that the device is depleted of holes (away from the junction) and that

the electron current Jn is asymptotically proportional to the applied voltage U.

Actually (3.28)(d) is a scaled version of Ohm's law (-1 D ) is the (scaled) resistance

of the device). n +n and nn+  junctions are resistors.

Now we turn to the case (A). For simplicity we take the SRN-recombination term.

Theorem 3.2. Assume that D(x) < 0 on [-1,X], D(x) > 0 on EX,1], IDIx)I DA on

(-1,1 and that DeC I i-ix,e I ClX, ). Let Sno S p be given by (2.14) (SRH).

Moreover assume that

(3.29) e < p, p sufficiently small

holds. Then the reduced problem (3.22), (3.19), (3.20), (3.21) has a locally unique

solution (in C ((-lox) U (X,l 4) which fulfills (3.24) and

-19-



Ca) *(x)=

+ n (1) + -#(x), X < x 4 1

#(X) - 0Ce on [-1, I]

(3.30) -,'
O~e )P) 0 -1 C x < X

Mb n(x) =

I.. +

'--9+ We*<

(c) J (x) 0(e ) 1x 1
n

Cd 3 Wx 0 0(0 - x C 1
p

Of course pix) is then given by

(3.30) Ce) p~x) =~:;;::

Prooft We introduce 4,as a new dependent variable Cinstead of 4,) and obtain from

C(3.22 )(Ca)

- 2D0' W (+3 )D -2nD'
n p(a) X x 4 1~C

0(2 n-D)
(3.31)- 2n'-DJi b

Cb)*'=*- X
DC 2n-D)

Boundary conditions for 4,are

(3.32) *C1) = (-1) 0

and the interface conditions (3.19)(a),Cb) transform to

+ ~'P(-l)D(l) ;(X-)-4,(X+) -

(a) e - D(X-)D(X+) e n(X+) -n(X-) =0

(3.33)

+C- 1)(-1) *X)4(+

Wb e D- JD")) e#()nCX-) -D(X-)) -(n(X+) - I(X+)) 0

D(X- -19-6I
.. .......



We set w e and o ( *0 0n0,Jl ,Ji ) where

00=0 on (11

(3.34) n(x W ( ,-

0 Dx), X < x 4 1

J (x) 5J 1 x) 0O on [-1,1]

and write the problem (3.31), (3.22)(b) - (d), (3.20)(a), (3.21)(a), (3.32), (3.33),

1 4
(3.19)(c),(d) in operator form F(w,z) =0 where F :[0,-) x (C ((11]

(C~ ([-1,11) 4x R 8. C~(-,] is the space of functions of which are i-times

continuously differentiable on [-1,X) and on (X,1] and lim f W(x exists for
x*X±
i

o C j 4 i. The space is equipped with the norm Ifl XI I sup If,)W
Xi j-0 xe[-1,1]

7X

Obviously F(O,z 0 0.

We investigate the equation D zF(O,z 0 )y = (,u) (where D zF(O,z 0  denotes the

Fr~chet derivative of F with respect to z at (O,z )) for y= yyyy) and
0 y (lyP3y

obtain

2DD

0

00 1

(3.35)~2D (a 1' Y 1 ,X<

o0 0 D L

0 2D' 1 1

D

(3.35i) (b) y' y + ,-1 X <

0 0 0

0 ~ 0 0

-20-



V4
where f e (cX[-,1].)) The boundary and interface conditions are

(c) y1 (-l) - o1, y2 (-l) = 02

Cd) Y1 (1) - a 3 , Y2 (1) " 04

(e) y3 (X+) - y3 (X-) 5

(3.35)
f) y4 (X+) - Y4 (X-) - 16

(g) y2(X-) -a

(h) y2 (X+) 08

with a. e R, i-1,...,8.

Because of the Fredholm alternative D F(O,z 0) is one-to-one and onto iff it is one-

to-one. Therefore we only have to show that the homogeous problem (3.35) (C0, f W) has

the unique solution y - 0.

From (3.35)(a) we get

Y2 D - 2 "4
,- y

(3.36) 1 X x 4 1

,3 12

Y4 -0 Y2

Therefore

1 , 1 0' 1 D' ,y~s .- D'  y2 -y 4 ) - i( -4-y 4 )

and

(3.37)(a) y; (Ln D)'y, - -y 4  0, X < x 4 1

holds. The boundary conditions are

(3.37)(b) yV(l) = yV(X+) = 0

Since 0 > 0 the maximum principle implies that y4 - 0 on [X,1] and therefore

Y3 
= y2  y -0 on [X,11.

-21-
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(3.35)(b) gives

Y2 - D Y2 +

(3.38) y3  y2  -1 ( x < X

3 1
Y4 -Y2

Again we get a second order problem
(3.39)(a) y" + (In IDI)'y - 1- x < X

(3.39)(b) y3(-l) = y;(X-) = 0

and the maximum principle yields y3  -0 on [-1,X]. y S y3  
- 0 on [-l,X]

follows immediately.

Therefore D F(0,z) is an isomorphism and since D F(w,z) is uniformly Lipschitz
z 0 z 0

continuous the implicit function theorem assures that there is a locally unique solution

z z(w) of F(w,z) = 0 for w e [O,w 0  sufficiently small. Since

F(w,z0 ) = O(w)

we get tz(w) - I = O(w) To show that this solution z(w) fulfills (3.24) we0X,1

compute the first order term z of the expansion

1

Z(w) w Z.w

i=O

as a solution of the equation

DzF(0,z 0 )zI  -DwF(0,z 0)

z solves (3.35)(a),(b) with f S 0, fulfills the interface conditions (setting

n1zI  = '1 ,1n1, Jn ,J )

-22-



|I

- -OCHI) > o
I .- D(X-)

- DC-I )DCI
n (X+) > 0
1 DCX+)

n X+) - 3nCX-) - 0

II

SI (x+) - 1 (x-) - 0

and the boundary conditions

*i(-1) - *1C1) " 0

n C-i) = - 1

n,, Jn1 if fulfill (3.36) and (3.38) and therefore 3 fulfills (3.37)(a) on (X,1]

subject to the boundary conditions

J' (1) - 0, J; CX+) - DC-)DCI)

P1  P1 I D(X+)

The maximum principle implies that J 0 n is negative on X,1), such that

n > 0 on iX,l) holds.

Similarly we obtain n > 0 on (-t,X]. Since the zeros x I +1, - 1 of n1  are

simple zeros, we obtain (3.24).
0

The biggest restriction of the Theorem 3.2 is the required smallness of e We

obtain from (3.1)(a) and (2.24) U CA)

U bi

- T + T
(3.40) e e

Therefore (3.29) holds if there is a constant K > 0 sufficiently large (but independent

of A) such that
(3.41) U <lUbC()1

UT  UT

holds. The applied voltage U has to be sufficiently smaller than the absolute value of

the built-in voltage (low-injection condition).

-23-
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Numerical calculations (given in Section 5) demonstrate that (3.41) is not necessary

for the existence of a reduced solution.

From (3.30)(c)(d) we get the reduced voltage-current characteristic

U
4 4 UT
(3.42 + ie ( + 0(y4X

(3.42) 1sn1 + JI = 0 D(1)ID(-1)I

In the case (A) (pn-junction) the total current density depends exponentially on the

applied voltage (see also Sze (1969)). (3.42) should be compared to the corresponding

result (3.28)(c),(d) for the case (B).

Theorem 3.2 can easily be generalized to more general functions Sn, Sp which do not

depend on Jn' Jp" (3.30) holds without change for S n S S 0.pn p

Now we turn to the internal layer problem (3.23). We prove

Theorem 3.3: Case A: Set D(X+) > 0, D(X-) < 0. Then, if the reduced problem (3.22),

(3.19), (3.20), (3.21) has a solution fulfilling (3.24), the internal layer problem (3.23)

has a unique piecewise monotone solution ' which fulfills:

o < a(o) < C exp((1-8 )!'n(X-) + p(X-) a + D/:(X+) -

(a)

for a < -E6 ix+) - (x-)

0 < -*(a) < C6 exp((-1+)/n(X+) + (x+) o + D X - -)

(b)

for 0 > E6.! (X+) - '(X-)

for every 6 > 0 where C6 > 0, D6 > 0, E6 > 0 depend on 6 but not on '(X±) if

*(X+) - *(X-) is sufficiently large.

Case B: Let D fulfill the assumptions of Theorem 3.1 and let the reduced solution be

given by (3.28). Then the internal layer problem (3.23) has a unique piecewise monotone

solution ' which fulfills

-24-
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A

(a) l'()C ( C6 exp((-1-6)%D(X-) 0), 0 < 0

(3.44)

(b) I*(alI ( C6 exp((-1+6)VD(X+) 0), 0 > 0

for 6 > 0, where C only depends on 6.
8

Piecewise monotone means monotone on C- ,0) and on (0,.).

Proof: For any piecewise monotone solution * of (3.23)

(3.45) (a) sgn *(0+) - -sgn *(0-), (b) #(0+) 0 0, #0-) 0 0

has to hold. This follows from the monotonicity and from (3.23)(c),(d),(f) since

#tO+)= t(0-) = 0 would imply E 0 (because n(X±) - p(X±) D(X±) holds) which

contradicts (3.23)(e) because of (3.25) and (3.28). #10+) 0 (or (0-) 0)

contradicts (3.23)(e), too.

Only two possible cases remain:

I) (0+) > 0, ;$0-) 0

(II) *(0-) < 0, *(0+) > 0

In the case (I) * has to be monotonically increasing on (- m,0) and on (0,.), in the

case (II) 9 is decreasing on both intervals. In the case (1) we derive from Fife (1973,

Lemma 2.1) that every piecewise monotone solution of (3.23)(a),(b),(c),(d) fulfills

(3.46)(a) f j(O+) dl 0
*(a) /2G(T')

where

GM f' n(X+)e' -P(X+)e-a D(X+))ds

(3.46)(b)

n(X+)(e l-1) + ptX+)(e- T-1) - D(X+)T

holds ((2.23)(a) fulfills all assumptions of Lemma 2.1 in Fife (1973) because of (3.24))

and

(3.47)(a) a, f t0o)( O a
(0-) /2FC)

with

-
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(3.47)(b) FMt fJ, (p(X-)e8  n(X-)e 8 
+ D(X-))dsm

P(X-(e . 1 ) + ;(X-) + DCX-)T

(also (2.3)(b) fulfills the necessary assumptions after setting -, - , A = -a).

Differentiation of (3.46)(a), (3.47)(a) gives

(3.48) *-(0+) - CO-

(3.23)(e), (f) gives the equation for ;(0+)

(3.49) G(;(0+)) = F(4(X-) - *(X+) - ;(0+))

which can be solved (uniquely) by using (3.46)(b), (3.47)(b) giving

U (3.50)(a) ;(0+) D(X-)(iqx+)-iiX-))+( (x-)- (X )) Ie(X-)-;(X+))
D(X-)-D(X+)

(3.23)(e) implies

(3.50(b) ;(0-) (XD(X+)C X+)-i(X-U+()(X-)-D(X+))+(;CX-)- (X+))D(x+)-D(X-)"

In the case (II) we proceed analogously and obtain the same formulas for *0+), $e0-).

Therefore, a unique piecewise monotone solution of (3.23) exists iff 4(0+), 410-) as

given by (3.50), have appropriate sign (and are not zero).

In the case (B) (3.50), (3.28) give

"'" D(x+) -
D(X-)Ln,.,.+, + D(X-) - D(X+)

(a) 1(0+)D(X-)(a) ;+ D(X+)-D(X-)

(3.51) D(X+)Ln D(x. + D(X-)-D(X+)

(b) 4P(0-)= D (X-)
D(X+)-D(X-)

* D(X+)
". " Setting y = D > 0 we define

Jtny-(y-1)
(a) 4(0+) = f 1(y) = 1

(3.52)
(b) 4P(n-) = f2 (y) = ytny-(y-)

y-l

Obviously Any - (y-1) < 0 holds for y > 0, y # 1. Also ytny - (y-l) > 0 for y > 0,

y 1 holds and we find that sqn f 1 (y) f 2 (y), f 1 (y) { 0, f2 (y) M 0 for y > 0,

-2 C-
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y # 1. We derive from (3.52)

(a) ;(a+) > 0, ;(0-) < 0 iff D(X+) < D(X-)
(3.53)

(b) 0(0+) < 0, ;(0-) > 0 iff D(X+) > D(X-)

In the case (A) we express n(Xt), p(Xt) in term of #Xt) using the interface condition

(3.19)(a), (b) (as in (3.26)) getting

(;(X-)-nX+)) + (P(X-)- '(X+)) - (D(X-) + D(X+)). We set z -

e +1
*- --4

and obtain

(3.54) h(z) h2 (z)

(a) *(+) D(X+)-D(X-)' (b) (O D(X+)D(X )

where

(3.5
5
)(a) h (z) - D(X+)g2(X ) + D(X-)g,(z)

(3.55)(b) h2 (z) - D(X-)9 2 (z) + D(X+)g1 (z)

with

(3.56)(a) gl(z) = ez - 1 -z(eZ+l)

(3.56)(b) g2 (z) = eZ - 1

We restrict to z < 0 since z ) 0 cannot occur because of Lemma 3.1 92 ( 0 for z < 0

and a simple computation shows that g,(z) > 0 for z < 0. Since D(X+) > 0, D(X-) < 0

we obtain hl(z) > 0 and h2 (z) < 0 for z < 0. Therefore

(3.57) (a) ;(0+) < 0, (b) 0-) > 0

follows in the came (A).

Now the existence theorem is settled in both cases, the decay statements (3.43),

(3.44) still have to be shown.

In the case (B) the equation (3.23)(b) reads

= g(*) :- D(X+)(e - 1) .

g'(0) = D(X+) holds and (3.44)(h) follows from F.ife (1973, T.mma 2.1). (3.44)(a) is

derived in the same way. t
In the case (A) we hav,: to kup in mind that. i(X+) - +(X-) can be larje (see Theorem
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3.2), which implies that ;(0+), *(0-) are large. Therefore we need estimates which are

uniform for large ;(X+) -

The proof follows the lines of the proof of Lemma 2.1 in Fife (1973). We set * --

in (2.23)(b), call the (new) right hand side of (;) and compute

n-(X+)+p(X+). It is easy to show that

(3.58) f(s) > (Vf'(O) - 5)2s, 0 4 s 4C

holds for S > 0 sufficiently small. Since f is increasing we get

T f~s~s • (f,0) - 5)262 f()-)

(3.59) F(T) ff(s)ds )o 2 + f(0)(t650 2

for y )P . Thurefore

(3.60) (4() - ; S0+( ) d .__, , I4,(0o)I
/2F(T)

holds for I*(0+)I sufficiently large, where 0 > 0 is independent of 4,0+). From Fife

(1973, Lemma 2.1) we obtain

(3.61) 14(o)l 4 6 exp(-(1-61)f'(O)a + D5 / -(0+)t)

D
for 0 1 # - Ia(O+)I. (3.43)(b) follows from (3.50(a). The proof of (3.43)(a) is

/f'(0)

analogous.

0

Similar estimates holds for the derivatives of . n, p have to be computed using

(3.15), (3.16). In the case (B) p 5 0 holds (since p E 0).

If the interface condition (3.23)(f) is changed to *(0+) - *(0-) = O(A) then the

layer solution ; changes at most by o(d'(X) - :(X) (in the max-norm). This

follows by applying the implicit function theorem to the perturbed equation (3.49). This

will be needed for the existence proof in Section 4.

The width of the internal layer at x = X can be computed from Theorem 3.3.

In the case (B) we obtain
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(a) d+[)X) - 0( '  M Anl + 0, +

(3.62) Ca) d4 [), - O(-'' ----- I LnC-('" )I) , ), *o+

° ,OCT-) ,,DC-'+)
(36)(b) d (A) - 0OC A +A0

where d+[A)(d(A)) denotes the width of that part of the layer which is right Cleft) of

X.

For the case (A) we obtain

(a) d (A) - A (Ii(x ,-icx-) ht,( A

I[X+).p(X+) /CX+) .i(x+)

(3.63) _______

(b) dC[A) - AC (/cx+ *-;x-) ' I A ),i])

/nTX- )+p ) i(X- ;[x)*)[x )

If the low injection condition (3.41) holds Theorem 3.2 gives a (physically relevant)

solution of the reduced problem and (3.30), (3.63) give

(a) d() - 0 1 --- + bi + in A

+ 6CX+) UT UT A -(X+ M

(3.64)

b) d (A) = 0( + . -L + n A
-iD(X-)I T UT ,I D(X-)I

These asymptotics are uniform as U * - a.
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. xiotence of Solutions

In this section we prove the existence of solutions of the singularly perturbed

problem (2.11), (2.12) using the asymptotic expansions (3.2).

At first we derive an a priori estimate on the number of carrier pairs valid for the

cases (A) and (S).

Theorem 4.1. Every solution of (2.11), (2.12) which satisfies (2.16), (2.17) and for

which Jn , Jp do not change sign in t-1,11 fulfills

(4.1) U > 0 4m> J ; 0, J ; Of J * 0, J * 0 on [-1,1]n p n p

(4.2) U - 0 <--> 3 3 0
n p i

(4.3) U < 0 <-> 1 4 0, 1 C 01 J * 0, J 0 on [-1,1]

n p nZ: pontesad

(4.4) Y 4 X4e a (Cn(xlp(x) e y ,4xA 4[-UT,1]

The proof is completely analogous to the proof of Theorem 4.1 in Markowich, Ringhofer, S
Selberherr and Langer (1982) and requires only the equilibrium condition on the scaled

recombination rates S., Sp . ror U - 0 the current densities Jn , Jp vanish and the

device is in thermal equilibrium. The np-product is constant y I throughout the

device.

The estimate (4.4), the equilibrium condition and the continuity of Sn, Sp imply

that Sn , Sp are small along a solution when U is small. In particular, for the SRH-
uT

recombination rate (given by (2.14))

(4.5) ISn =S IL A (e - 11
n p 20

holds along every solution of (2.11), (2.121. Therefore it is intriguing to set

(4.6) S S a 0n p

for sufficiently small iud.
UT

We now give existence proofs for (2.11), (2.12) in this case.

For the simple case (B) we show
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Theorem 4.2. Aasme that D fulfills the assumptions of Theorem 3.1 and that (4.6)

holds. Then, if 0 < A < X. and 1h-I 4 P for p sufficiently mall but independent of
0

A holds, the problem (2.11), (2.18, (2.19), (2.26), (2.27) has a solution which fulfills

(2.16), (2.17) and

(4.7) *(x,A) - (x) + ;(-) + 0()

(4.9) n(x,A) - D(x) + (-X) + o(k)

(4.9) p(x,A) - o(1) (0 0)

(4.10) J (x,) - ) + O(A)

(4.11) J (x,'A) - 0(A)
p

uniformly on C-1,11 where *J are given by (3.20)(e), (d), is as in Theorem 3.3,n

case B and n fulfills (3.1S).

Proof. The right hand sides of (4.7) - (4.11) are the am of the reduced solutions as

given in Theorem 3.1, the layer terms as of Theorem 3.3 (p B 0 holds since p S 0) and

remainder terms. We denote these remainders by 3, n, up, It2 I. Inserting into
n p

(2.11) (with 8 I s B 0), using (3.23) and (3.6), (3.7) givesn p

2 2-(a) A21; w- - p " A

(b) 3'- (*+*)1. + (n+;)3; 4 zj + aZ; + 3 1(..A)
n n * 7 n*n

(4.12(c) 3') - -(*4*)'3 - 3t - p ,

(d) Z; 0

n

(e) ' - 0

where the functions Oil *2 satisfy

(4.13) f 1 I(*iCs,A)Id - 0(A), i 1,2

Inserting into the boundary conditions (2.18), (2.19), (2.26), (2.27) shows that the

boundary values for , 3, C p at x ti are O(A).

We define the operators:
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(a) (H ng)(x) = fx, exp(;(x)+4i(0(x)) -*(s) -*(a(s))g(s)ds

(4.13)

(b) (H g)(X) - f' x exp(-4i(x)-*(O(x)) + *(s) + #as)gsd

p -1

where a(x) = and rewrite (4.12) (b), (c) as integral equations

E n exp(*(x)+;(cY(x))=( -((1)E n(-1) +

(4.14)(a) (H n(n+n)E)(x) + (H nE )(n x) + (H nE nE)(x)

+ (H n+1)(x)

Ep exp(-4i(x)-*(aY(x)) + *(a(-1))E P(-1)-

(4.14)(b)
-(H E )(x) - (H E E)(x) + (H 4, )(x)

p J Ppp
p

From (4.12)(c), (d) we get

(4.15)(a) Ej const. on [11
n

(4.15)(b) E B const. on [11

p

since E~ in Ei e W(-1,1]).
n p

Because of (4.13) and since IE n (1)1 O (X), IE p(-1)1 = (A) we obtain from (4.14)

(a) E =H (n+n)E + E~ H 1 + H E E; + 0(A)
n

(4.16)
(b) E -E~ H 1 + H E E; + 0(A)

p p p p
p

Partial integration and (3.23) give

(4.17) (H (n+n)E')(x) (n+n)E -(H J E )(x) + )G E
n 4n 4 n n * n,A4

where G CU-I1]) + C((-1,11) is uniformly bounded (in A). The continuity of
n,4,

n + n at x =X was used for the derivation of (4.17).

From (4.12)(b) we derive, after partial integration

(41)HE F' E P n 1 -i E E -HE 'E + XF EEP + 0(A)(4.1) H n~4 n'4, lnnE* 4 n J 4 n nE*, Xi,A~,4
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where F c (-1.11) * C(-1,1]) is uniformly bounded. Another partial integration

gives

(4.19) H Z 1nK -2 a (en)'3,( )do + •M
n 2-

Combining (4.16) - (4.19) gives

(4.20)(a) " (E+;)3, " H J Z4' + Ej Hn1 + An,%(., * ,En. E
n n

and proceeding analogously for p

(4.20)(b) E p - - p H l + APA(Zi,Z;,ZpZj )
P

wher AX Ap Aare nonlinear operators from (C([-1,11))4 into C(-1,1]) which

fulfill

NA (Z*Z, )1 -9 C (0(M + 1Z I (A+XAIZI1q,X (4i,
3
4,'q,3 (1 -1,1] C1(0 

+  ' 1 (-1,1]( +1'; [-1,1]

(4.21) (a)
+ I11 + IE3 I[.,1 + IE I ,IVI

q

IDAqA (Ei fFZiqI )i 4 C 2 (k + I (I'll

q

+1EI + 1 Ilq [-I'll ia [-1,11

q

+ 131I + lIE'I

where C1 C2  are independent of A, "D" denotes the Frfchet derivative and q - n,p.

The constants 3 3p can be determined from the boundary conditions for Rn, Ep at

x - +I:

(H n )(1) " An,O "' ZE3 )(1)
n n n

(4.22)(a) 3 (
n H" n 1) (1)

Ap, (E E';,En ,3 n (M1)

(4.22)(b) 
3
p (H 1)(1)

p

We remark that (He1 )(1), (Hp1)(1) are bounded away from zero uniformly in A.

4Ne regard 21 En , Zp, mint Ej3p as dwelling the space AX = C ([-1,11) n

C ([-1,1]) which is equipped with the norm Ifl, - Ifl[_-,1] + 2f" ,X)U(11 (4.21)
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implies that the mappings defined by the right hand sides of (4.20) are contractions in

spheres of radius 0(A) (centered at 0) and therefore (4.20)(a), (b) can be resolved

with respect to En, Ep reap.:

(H 1)(x)
E = (n+n)E - H J E + (H J E )(1) n

(4.23)(a) n n n n (H 1)(1)
n

(4.23)(b) E =

The operators QnA' apX fulfill the estimates (4.21) when IE I , IEpI

1E I ,1 E I are substituted by the radius of the sphere in which the

contraction mapping theorem is applied.

Inserting (4.23) into (4.12)(a) gives

(H 1)(x)

A2 E - (n+n)E = (H J F )(1) (n (Hn3 E )(x)
4,2 4, n4 (Hln )(1) n n4

(4.24) + A (EE,;) - Q,.(E ,To,)

A2;,., -1 -x < X and X < x ( 1

subject to O(A) boundary conditions for E at x = ±1.

Since n+n is positive and continuous on [-1,1] the boundary value problem

(4.25) A - (n+n)y = f(x), y(-l) = y_, y(
1
} = y+

has a unique solution y e Ax  for all y_, y+ e R, f e Cx([-1,1]) which fulfills

(4.26) lylX const(Ifl[Il + ly4l + ly+l

Since all estimates so far are uniform for I, I • p and since
T

(4.27) 1HJn E 11 C const plE*1[_1,1]

holds with const independent of A and p e [-%0P 0I (see (3.2H)(d)) the contraction

mapping theorem with p sufficiently small assures the existence of a locally unique E

.1w Lth

(4.28) 1E I[ = 0(A)
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The existence statement of Theorem 4.2 follows immediately. The positivity of p =E

follows by investigating the higher order terms of the expansions similar to the proof of

Theorem 3.2.

This proof does not carry over to the case A since then Hn , H are not uniformly

bounded (in A) anymore. At first we rewrite (2.11) (with S - S p 0) as a secondn p

order problem.

From (2.11)(d), (e) we get

(4.29) J n const, 3 - const on [-1,1]n p

(2.11)(b),(c) give

(a) n - nl(1 e(x) -*(1) + Jn e (x) r e-'llas
n

(4.30)

(b) p - pll)e 1( )- *(x) - J a- x) r e .* s . I
p1

*n3 Jphave to be determined from the boundary conditions for n, p at x = -1n p

UC  UA

22 U U
(4.31)ta) Y 2 2(e UT - e T)

S ds

UA C

(4.31)(b) Y T e T
P fli e *(S)ds

(4.30), (4.31) immediately give n > 0, p > 0.

UWithout loss of generality we set UA -U - and obtain by inserting (4.30),

(4.31) into (2.11)(a)

x le -)is(4.32 2)L2 sih +J1e~i
(4.2)2y (.~h* -- ) + sinh(-U-)(e*, lis

UT UT e ds



for x e E-l,x) u (x,1] subject to the boundary conditions (2.20), (2.21) and the

interface conditions (2.16).

At first we derive an asymptotic representation of the voltage current characteristic.

Lemma 4.1. Let S ES E0 hold and assume that U fulfills the low injection condition
n p

(3.41), that 0) fulfills the assumptions of Theorem 3.2 (Case (A)) and

(
4.33)(a) *(x, A) = 4Cx) + ;C(-X) +6A

where the reduced solution 4*fulfills (3.30)(a) and 4*is given by Theorem 3.3. Then

(3.31) implies

U
U U

(4.33)(b) J = IA Ce( -1 (1 + 0(8(AX)I + d( CA) + d( CA) + Y A4eT)

U
44 UT U

(4 .33)(c) J Y4 A C e T 1 (1 +0(le(A)I + d+(A) + dCAX) 4 y4Ae UTs)

p 4l DCs)ds

Proof. We obtain

e f.~-*s'jd ds 'x DC-i) ds+ D(s1) A 0C10(A)I)ds

D__1_ - 1 1) e4

C ~s e -1)ds + e I -(1 ds
x D~s)

+ e t-* ClD( e- x 1)ds

+x D~s) C8AIs .

Usinq the estimates (3.43) and the layer widths given by (3.64) we derive



e' 'ds -f1 D(-) ds + o(O(A)l + o(d())

+ 01y4 ,4 e ) + 01d+

Therefore

U U U

U 2t 2

j =,T -e T ly
4 A -IT )

n 0 p e-(sA) e - 1 e-l(s, ))ds(1 1 ~

= -4)UTr
(1 0( 6()) d (X.) + d_(1) + y 4; eJ ))

f x ID (s )Ids (O

follows. The proof for the asymptotic representation of Jp is analogous.

If Dn ' Dp holds (which implies that Jn J p have the same scaling factors) and if

a solution of (4.32) subject to the boundary conditions *(-1,A) = 0, 4(,A) * + exists

for which 8(A) + 0 as A + 0+, then the total voltage current characteristic of the pn-

function is given by

U .

(4.33)(d) J = j + j _ y4A4( I + I )(e - 1)(1 + oM1))
n f'1 ID(s)Jds fID(s)ds

The same asymptotic form of J can be found in Sze (1969) (and other standard books on

semiconductor physics), however the derivation used there heavily relies on physical

arguments.

We now prove an existence Theorem for the case (A) under a slightly sharper assumption

on then that used in Theorem 4..
T 2

Theorem 4.3. Let D fulfill the assumption of Theorem 3.2 and D e C (-1,11. Assume

that

T In Y' A2 I

holds for srsne p > 0 sufficiently small but independent )f A. Then tlere is a solution

*(x,A) of (4.32) subject to (2.20), (2.21), (2.16) and 4P fulfills
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(4.34) ,x), C(x) + ,(--) + O(d+(A) + d_(A + (y4?4')')

for some y > 0 where i is the reduced solution as given by Theorem 3.2 (with

S S E C) and 4 is the layer solution given by Theorem 3.3.
n p

Proof. We define

DM + 1D(i12 + 4 4

Si n2 2 2

2y1
L-1 2y2 2 4

Since 2y A 0 0 holds, the problem (4.32), (2.20), (2.21) with U - 0
sinh *+ sinh 4

can be rewritten as

(4.35)(a) A 2  [(4'g 0 D(x), X < x I

sinh *+

2 sinh *0(4.35)(b) D(-1) D(x), -1 x < Xsinh 0

0, 0
(4.35)(c) 0,o ) = *+, 40(-1,) = 0

(4.35)(d) *0 e C ([-1,1])

0 0
We now regard 4+, H Sin parameters independent of X (as in Section 3).

Then the reducedi sol.ition 40 has the asymptotic form liven by Theorem 3.2.

Dlx) 0 0 DlX) 0 +
area sinh( -- j) sinh 0+) = + + In -i + O(e ,X < x 1

(4.36) W0x

• D(x) 0 0 D(xl 20

area sinh( D(-l- sinh 4_) 
= , n - In ) + -(e )-1 x < X

ani th , internal IAy,,r MolkUt 'en 40 iv; , in Thporem 3.3 but -hibject to the nhanqp'l
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I I

interface condition 1(0+) - *(0-) = A('IX-)*'X+)).

In order to investigate stability we substitute u0 0 in (4.32). (2.20), (2.21)

with U - 0 and obtain the problem
0

2 (1) sinh 
4iu0

(4.37)(a) 2*u; . 0O 0 o -I DcX) -i X < X, X < X 4 1
1 1 sinh 0 0

01_°
(4.37)(b) U0 (-1) , U0 (1) 1

(4.37)(c) u0 e c (L[-1,11)

we denote (4.37) by 0oA. *.t where Ao0 ° t A *Cx ([-1,1]) R3 and

investigate the equation

(4.38) LOV 5 DF 0 (u0 10 ,k,*,0 'f)

- *0 110
where u " , u0 . (4.38) is equivalent to0 0, UOo ;0

(4.39)(a) Av
"

- D11) v = f(x), -1 4 x < X, X < X 4 1sinh *+
O

(4.39)(b) v(-1) = a, v(1) = B

(4.39)(c) v e C

We remark that 0 + 0 C [-1,1]).

The maximum principle immediately implies uniqtivness of the solution of (4.39) and the

Fredhotns alternative gives existence. To (jet a bound for the inverse of (4.39)

we construct the barrier function:

(4.40) Vb (x,) = K + exp(- A(x-X)
2)2 (l°-IO_)

where the constants K > 0, B > 0 will be determined thereafter.
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WeJ compute-

(4.41) (L Vb)(x) 20~ (20(x-X) - )exp(- O(x-X)'
X,O b 0 ~ -~ 0* 2 2(f0-

I

cosh(. 0+e) copute

D(1) (K + exp(- 
-

X o -

2 2L

K + ( ( 1+ X )2 ), K + .p ( ( , ( 1 _X )2 
*

K+exp- 2 0 0 
"

k2( 0 4

We denote the first component of (LAov0b)(x) by (LA(o)v )(x) and get j
+ -0(T 0Vb)(' ) 4 0 0 2 r X- -- ,x " -

and
3

20... (20(x-X) 2 1)exp(- B(x-X) 2  4.0e± 2 x ii
2- 0 0 2 0  0 2 0 0 0,-1_ ). ()+-,- (* .-*,.) *,l,-*

where (f)+ denotes the positive part of the function f.

Now we use the estimates for 4 given in Theorem 3.3 for fixed 0 < 6 < 1. At first

we estimate

S FD(x)e 0 x C-[X,1]cosh( (0 +*
D(I) 0

sinh +

ID(x)le , x C-[-1,X]

Since *0 is monotonically increasing on [-lX) and on (Xl] this yields

-40-
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I0 0

|1

O(W) exp(*-0(-)), Ke -+ ]

(L (x) , 4,,Q 00 - "-"

+ - * -0 x k
ID(X)lexpC*,oc-  X-C 26

(note that x X). We now choose B

I (1-8)/TI~ (l(5)/T+P(X:?)

such that

D(x) ,x e

XeX 210

3

M (1) W 4 0
2  .Ke

"1
I

22

IDX) , x e

holds and

3

402

' ' -,00

-1
e min ID(x)ine [-1,1]

Then

M v )(x) - min(1, -- , x e j-iii. . , 0 b * ,,. , _ , 2*I-

-41-
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holds. The maximum principle implies the estimate j1010

IL X' 1 1 1 )) 2 _ , ; I] onst. -t "

(4.39)(a) gives

(4.42) IL1 2 cont. -
CX (-1,]) 2
Cx

The Fr~chet-derivative DuF0  is locally Lipschitz continuous:

0 0 00IDuF 0 (wIf.,*+, t) - DuF0(w2 P, * +,Ol 2

( 4 .4 3 ) 
0 W - Iconst. 1 -W2 AX

to + *const
for w1, w2  in a sphere centered at u0 +u0  v with radius - .

Now we rewrite (4.32) as

0 U
sinh( U+ u ) .l°+u)

DM44)2 u.) D(1) H( s h U
( 0 0 +i0nh4 2UT  0

++ sinh *, *+ T in h+

D(x)
- , x e [-1,x)o(X,1].

where H(*) denotes the integral operator on the right hand side of (4.32). We denote

*'4 0 U
(4.44) subject to the boundary conditions u(-1) = 0, u(1) (with *_ +

0 2'* Z0 U ,0

*+ = - ) by F u(U,A,4, = 0. The Frdchet derivative LA,U =
-- 0DuFu( 0 +40,A,4+0 0) is given by

-UD(1)sinh(* +* + -)

(4.45) (LM V)(X) = (2, -.. T
sinh 4'0

Usinh 2U

D(1) 0 (DuH( *0+*o0 )v)(x), v(-1), V(1))
*3nh

-42-
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where

* 0
ID H(*o+#o)Ic (-1,1]() C - conet. sinh #+

x

Therefore, if

(4.46) ll < surf. small
UT #+_uf.emi

holds, Lx U  fulfills the estimate (4.42). Moreover DuFU  is locally Lipschitz

continuous and fulfills (4.43).

Since **+ - (4O*O)I[_,1 C const 1U1 a simple perturbation argument shows that

also DuF(.X ,,) fulfills the stability estimate (4.42) and that DuFU is locally

Lipschitz continuous around $.; ((4.43) holds) if U is restricted by (4.46).

We now insert u4u into Fu  in order to compute the 'local error'. We obtain
0

t t sinh(4*.4 -2)
F CU4.uA.* . *-) # + *(a) -Dl

uo sight __o________0

U 0
*4 

T
g.*4 sinh *4.

x-Xx
sinh(-!- 1(44'

2U. T sinh 04 04 4 4

with = - Obviously

D(I) sinh(R- -(** I x ev'Y#df +ee-ds 4. .1 e)
0 2U Tsnh 0 0 n I1

where J n J are given by (4.31)(a), (b) when * is substituted by *'*.

We rewrite

a a d e-; ea sinh( U, a
fx /1 x 2Uo e

P sinh #+

Since * is positive on [-IX) and negative on [XtI ,and monotonically d,|creAsinq on

[-I,X) and on (X,1I we get
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,c l' X eJ*ds 4 const x

Lemma (4.1) with O(A) -0 gives

uL DC,)sinh(-"
Ril__R4_ 2T -j-

,inh( ,~ C-- eT
o 2T inh 0 0 I) e
+ *+ 4n *+

if the low injection condition holds.

We calculate, using - D(I) = D(-i)

2 sinh 0 2 sinh 0

sinhi*+4p* jsinh(- 
2UT  2U

*(0) - [0(1) - D(1) e - D(x)]
sinh+ sinh4"

+ P
U

Ca(a) - [D(I) 0 D(1) - D(x)]
2 sinh 2 sinh

0 00+ +0 a U m
[D(x) e e4 D(1)e- T e-; + 0( 4 eUT )e;

2 sinh *° 2Dx)sinh 0 e(4.47) +4+

00U+- 0 U '2 02 UT _ aD- e e D(x) e ;0 4 , 4 ) 4eT)e ,
2D(x)sinh t°  2 sinh ° e

U

+ O ( 4A4 eUT )e-* 
"-x)] 

x e Cxi3

U
(4 A4eUT)-

+ 0CY X - D(x)] x e [-1,X)

Using Theorem 3.2 gives
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DCx) 0 ;(X+) + (DCX) -D(X+)) + O(Y'A Cl + e T

2 sinh 4

Ux xP (X,1)
04+ U

2 T# +__U T

2D~x)sinh *

0oU

D I 2 UT + U T

2O~x)sinh 0=nX)+OyA(+e

x e f-I,x)

=0 U

2~x (X-) + (DCX-) - DWx) + O~y 4A Cl + e ))

Since #1 solves the layer-equations (3.23)Ca),(b) we get for (4.47)

U !U
41U U

(D(x)-D(X+)fe*-1) + O0, 4,X(1 + e ))e* + Oy 4A (1 + e T))e, x e (X,1]

(4.48)

U

(D~x)-DCX-))Ce -1X40~ AC + e ))e
U

44 U
+ 0(Y A 0I + e T ))e-*1 x e (1X

41is negative on (X,11 and positive on (-I,X) and since o e C~(-,) y e obtain

I(D~x)-D(X+))(e'-'1 4 const. d +(A), x e (X'l1

ICD(x)-OCX-))(e4 '-1)I 4 const. d CA), x C [-l,X).

Also, (3.50)(a), (b) imply
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e -;(°+, 4 const..X xp ,o,.

-ID(x-)l

€T
cosePD(X+)_D(X_

) U T

and analogously

- -D(X+)

e -Ce* const. expe1 -  -D(X U--U ( y 4 D (X+)-D(X-) x-C [-1,X)
e < costeXPD(x+)IX -) U T

Therefore the expansion (4.48) is bounded by const (d_(X) + d+()L) + exp(a~l)(4k4
-T

where a > 0, y > 0 holds.

These estimates and i e c ([-1,11) for D e C ([-1,1]) imply that
X X

0  d (A) + d+ (A) + e T (Y4 4 )Y

U4.49 ,,,(u+u, - _,( ,1)'  ( const 0Xo

holds.

The stability estimate (4.46) (which holds for L if U fulfills (4.46)),A, U if U f l i l 4 4 ) ,

Lipschitz continuity of DuFU and (4.49) make it possible to apply the version of the

0 0
implicit function theorem given by Spijker (1972), which implies that F u,A,*+,4.) = 0

x

has a solution u which is unique in a sphere in Ax  with radius for
(I0)2

sufficiently small x centered at u+u and the estimate

*~ 4A
lu-u a 4 const.(d (A) + d_lX) + (YX)

A + () ,
X

holds for II-I 4 -- where p is sufficiently small but independent of A.
U T 0

0

U

v T  *T
We remark that the size reduction on ITlcomes from the interpretation of (4.32) as

perturbation of the equilibrium problem (U=0) which was heavily used for the stability

proof. The numerical results demonstrated in the next Section indicate that existence and

validity of the asymptotic expansions hold under much weaker restrictions on IUI.
UT
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5. Numerical uxperiments

we demonstrate numerical results for two pn-junctions in the high injection case, that

is U > U (M). The existence Theorem 3.2 for the reduced problem does not hold if the low
-bi

injection condition (3.41) is neglected. Both functions we investigate have characteristic

length 2P - 5 x 10"3cm, the doping profile of the first pn-junction (called junction I

in the sequel) is {1 3
-0.5 x 107cm , z <2

(5.1) CZ) =

10 cm < z I

and for the second junction (called junction II in the sequel)

I 153 1

(5.2) C(Z) = J
10

17cm3  , z te2

+ - 17 3

Accurately speaking, both devices are pn junctions. In both cases C 10 cm This

and the numerical values for the parameters from Table I gives for both devices using the

formulae (2.6), (2.9):

(5.3) A2 
= 0.4 x 10 "  2 = 0.25

For junction I we obtain

minlC(z)
(5.4) z 2.

maxlc(z)l 2
z

and for junction ZZ

mintC(z)z 
-2

(5.5) 1a0C(z)l
z

For both cases the singular perturbation approach seems applicable because (2.22), (2.23)

'holds' (the order of magnitude of A2  and minJC(z)l/maxlC(z)1 as given by (5.3) and
z z - 17

(5.4), (5.5) resp. are clearly different dnd n 10 while C 10
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The built-in-voltage (calculated using (2.25)) for junction I is

(5.6) Ubi - -0.79V

and for junction II

(5.7) Ubi - -0.69V

All calculations described in the sequel were performed on the CDC-Cyber 74 computer of the

Technical University of Vienna with the boundary-and-interface-problem solver PASVA4

written by M. Lentini and V. Pereyra. The SRH-recomination term was used. Figures 1-3

show the reduced solutions of a typical high injection case for junction I with

U - 1.39V. The majority carrier densities (n on the n-side, which is the interval (1,1]

and p on the p-side which is the interval (-I, )) are larger than the doping IDI

(except at the boundaries x - ±1).

The reduced solutions for a high-injection case (U = 0.99V) for junction II are

shown in Figures 4-6.

Since in both cases the applied voltages are significantly larger than the absolute

value of the built-in-voltage, the existence Theorem 3.2 for the reduced problem cannot be

applied. However the presented numerical results give a strong indication for the

existence of reduced solutions even in the high injection case.

Figure 7-9 and 10-12 show the solutions of the singularly perturbed (full) problem

with U - lUbil for junction I and II respectively. The internal layer in the components

*, n, p is clearly visible. The solutions of the corresponding reduced problems (whose

existence is also not covered by Theorem 3.2) were also computed and they agreed up to

graphical accuracy with the full solutions away from the layer (see Figure 13, which shows

the reduced solutions n, p for function I). In fact, the reduced solutions were used as

starting guesses for the numerical method to compute the full solutions and convergence was

achieved in a few steps.

This indicates that the asymptotic expansions are valid for a much larger range of

U values than given in Theorem 4.2.
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